
Quantum Computing Engineeringuantum
Transactions onIEEE

Received 17 April 2023; revised 11 July 2023; accepted 21 July 2023; date of publication 4 August 2023;
date of current version 14 September 2023.

Digital Object Identifier 10.1109/TQE.2023.3301899

Machine-Learning-Based Qubit
Allocation for Error Reduction in
Quantum Circuits
TRAVIS LECOMPTE1 , FANG QI2, XU YUAN3 (Senior Member, IEEE),
NIAN-FENG TZENG4 (Life Fellow, IEEE),
M. HASSAN NAJAFI4 (Member, IEEE),
AND LU PENG2 (Senior Member, IEEE)
1Louisiana State University, Baton Rouge, LA 70803 USA
2Tulane University, New Orleans, LA 70118 USA
3University of Delaware, Newark, DE 19716 USA
4University of Louisiana at Lafayette, Lafayette, LA 70503 USA

Corresponding author: Lu Peng (e-mail: lpeng3@tulane.edu).

This work was supported by the National Science Foundation under Grant OIA-2019511. The work of Travis LeCompte was supported
by a Louisiana Board of Regents Graduate Fellowship.

ABSTRACT Quantum computing is a quickly growing field with great potential for future technology.
Quantum computers in the current noisy intermediate-scale quantum (NISQ) era face two major limita-
tions:1) qubit count and 2) error vulnerability. Although quantum error correction methods exist, they are
not applicable to the current size of computers, requiring thousands of qubits, while current NISQ systems
have hundreds at most. It is, therefore, imperative to improve the reliability of the circuits as much as possible
to make them robust to the errors that will occur. One common approach is to adjust the compilation process
of a circuit to create a final circuit with improved reliability. However, there are many decisions to be made
when compiling that affect the final performance of the circuit, two of the most critical ones being the
mapping of logical to physical qubits (the qubit allocation problem) and the movement of qubits to satisfy
two-qubit gate adjacency requirements (the qubit routing problem). We focus on solving the qubit allocation
problem and identifying initial layouts that reduce error. To identify these layouts, we combine reinforcement
learning with a graph neural network (GNN)-based Q-network for analyzing both the connections and
error rates of the graphlike backend of superconducting quantum computers to make mapping decisions,
creating a GNN-assisted compilation (GNAQC) strategy. We provide both the circuit and the properties of
the target backend as input to guide the decision-making process. We work with the IBM Qiskit applications
programming interface to compile and simulate our quantum circuits. We train the architecture using a set
of four backends and six circuits and find that GNAQC generally outperforms preexisting qubit allocation
algorithms, increasing final relative output fidelity by roughly 12.7%.

INDEX TERMS Fidelity, graph neural networks (GNNs), quantum compilation, qubit allocation.

I. INTRODUCTION
Quantum computing has quickly become a popular field of
research with great potential for future technology. Taking
advantage of quantum mechanics allows for several possi-
ble operations and interactions that are not possible with
classical systems. Quantum systems have the potential to
improve communication, encryption, physical simulation,
and some algorithms such as Shor’s algorithm for factor-
ization [40]. There are several potential physical implemen-
tations of quantum information systems, although the two

most available systems today are utilizing superconducting
technology [11] and trapped ions [24]. We design and verify
our compilation methodology with superconducting quan-
tum computers as they are accessible and have considerable
software support. However, the technologies still face limi-
tations, mainly in size and reliability.
Modern quantum computers are classified as noisy

intermediate-scale quantum (NISQ) devices [1]. These NISQ
devices are named as such due to their limitations on both
the number of qubits (or quantum bits) available and the

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 4, 2023 3101414

https://orcid.org/0000-0002-6915-3545
https://orcid.org/0000-0003-3775-3033
https://orcid.org/0000-0002-4655-6229
https://orcid.org/0000-0003-3545-286X
mailto:lpeng3@tulane.edu

Engineeringuantum
Transactions onIEEE

LeCompte et al.: MACHINE-LEARNING-BASED QUBIT ALLOCATION FOR ERROR REDUCTION IN QUANTUM CIRCUITS

FIGURE 1. (a) Example quantum circuit, displaying a three-qubit QFT
algorithm. (b) Example IBM backend. Darker colors denote higher gate
error rates (1e-2) while lighter colors denote lower error rates (1e-3).

reliability of these qubits and their operations. Most NISQ
devices contain from 10 to 100 noisy qubits, although many
systems are on the smaller end of this range, containing only
5–24 qubits. A common metric to evaluate these systems is
quantum volume [12], which incorporates both the number
of qubits and their vulnerability to error. Due to the relatively
high error rates in quantum computers, many executions of
algorithms are unlikely to complete without some error. As
such, much effort has been put forth to both make the algo-
rithms resilient and to reduce the vulnerability of the physical
qubits.
Quantum error correction (QEC) methods do exist but

many are not feasible on NISQ systems [5], [9], [16], [21],
[43]. Many QEC methods implement similar mechanics to
classical replication or redundancy systems, where the data
in one or more bits are encoded into a larger number of bits
to reduce the effect of incident errors. However, due to the
quantum no-cloning theorem [49], rather than copying bits,
one must rely on entanglement instead. Again, one or more
qubits can be entangled with a greater number of qubits to
provide redundancy and mitigate the effect of errors. Shor’s
code, the first to demonstrate the existence of QEC methods,
encode one qubit into nine to account for both phase and
magnitude errors [41]. However, when qubits are a limited
resource, it is not possible to implement these QEC methods
while retaining enough qubits for computation. Many sys-
tems may not be large enough to allow for even one secure
qubit depending on the error codes used.
Most approaches increase the reliability of quantum cir-

cuits during execution rather than completely removing er-
rors. It is common to modify the circuit during compilation
to choose more reliable configurations when applying the
circuit to a physical backend. Using different qubits, con-
nections, and operations can have a large impact on the out-
come of the circuit as the qubits may exhibit very different
error profiles, as demonstrated in Fig. 1, where the color of
qubits and their connections indicate their error rates. These
error rates can vary day-to-day with the environmental con-
ditions, as we will demonstrate in Section III. The problem
is generally broken up into two parts: 1) choosing the initial
layout to map virtual qubits of the circuit to physical qubits
of the backend (qubit allocation, qubit mapping, layout se-
lection) and 2) moving qubits through the mesh using swap
operations to satisfy adjacency requirements for two-qubit
operations (qubit routing, SWAP mapping). Due to the large
number of possibilities when applying a circuit to a back-
end, it is difficult to identify the best possible configuration,
although many works have found success with a variety of
methods [15], [29], [34], [45].

Our work aims to improve upon existing qubit allocation
approaches, as our investigation shows that there are con-
siderable performance improvements to be made. To solve
the qubit allocation problem, we incorporate graph neural
networks (GNNs) to aid in processing the inherent graph
representation of the superconducting quantum backend, cre-
ating a GNN-assisted compilation strategy (GNAQC). We
combine this GNN processing of the backend with feed-
forward networks for processing input circuits to create a
total system for providing suggested layouts as solutions to
the qubit allocation problem. We implement GNAQC us-
ing Qiskit [38] and TensorFlow [2] and evaluate its perfor-
mance on two different IBM backend configurations and six
different quantum circuits. We find that GNAQC generally
outperforms the other layout methods with some variation
across the backends and circuits, increasing relative fidelity
by approximately 12.7%. We also find that GNAQC is more
consistent at choosing more effective layouts, providing a
more reliable allocation method.
Our contributions can be summarized as follows.

� We demonstrate the limitations of preexisting layout
methods.

� We provide GNAQC, a new solution to the qubit alloca-
tion problem built onGNNswith feedforward networks.

� We test GNAQC on two physical backends of 7 and
27 qubits using 6 different benchmarks and find that
GNAQC can consistently provide better or comparable
initial layouts to preexisting methods.

� We demonstrate that GNAQC reduces the error of quan-
tum circuits by providing more reliable layouts, finding
a 12.7% relative increase in fidelity.

II. BACKGROUND
A. QUANTUM CIRCUITS AND COMPILATION
Quantum circuits are composed of a set of virtual qubits
and lists of gates that operate on these qubits. An example
circuit is shown in Fig. 1(a). Gates are normally classified
into three types: 1) single-qubit; 2) two-qubit; and 3) mea-
surement gates. Single qubit gates simply adjust the state
of the qubit it operates on. Two-qubit gates perform oper-
ations on a pair of qubits; for example, controlled two-qubit
gates modify a target qubit based on the state of a control
qubit. Measurement gates measure the qubit and output the
result into a classical bit. It is important to note that su-
perconducting systems cannot currently support any-to-any
connectivity between qubits, where two-qubit operations can
be performed arbitrarily between any two physical qubits.
Two-qubit operations can only be performed between pairs
of adjacent qubits as shown in Fig. 1(b). If the circuit requires
that an operation be performed between two distant qubits,
the qubits must be moved from qubit to qubit using pair-
wise SWAP operations until they reside on adjacent physical
qubits. This process of adding SWAP operations to the circuit
to satisfy two-qubit operation requirements is known as qubit
routing and is another actively researched area in quantum
computing.

3101414 VOLUME 4, 2023

LeCompte et al.: MACHINE-LEARNING-BASED QUBIT ALLOCATION FOR ERROR REDUCTION IN QUANTUM CIRCUITS Engineeringuantum
Transactions onIEEE

FIGURE 2. Overview of qubit allocation, one step of the compilation process that maps a logical circuit onto a physical quantum machine.

Althoughmany different single- and two-qubit operations,
or even multiqubit operations involving three or more qubits,
may be performed throughout an algorithm, these operations
are normally decomposed and represented as a combination
of basis gates. Each backend contains a set of basis gates
that act as a universal set from which all other operations
can be composed. For example, a SWAP operation could
be implemented as three cnot gates. It is common to see a
combination of single-qubit rotation operations and one two-
qubit operation as the basis set, although the set of available
gates can vary from backend to backend, especially if they
are implemented with different technologies. This process of
decomposing circuits’ gates into basis gates is another major
step in compiling a quantum circuit to prepare it for execution
on a quantum machine. The general data flow for compiling
a quantum circuit is shown in Fig. 2. We omit decomposi-
tion from the figure and show the three other steps that are
commonly discussed: 1) optimization, 2) allocation, and 3)
routing. All of these processes are implemented similarly to
compilation passes of classical programs, where the program
is gradually modified as it moves from stage to stage of the
compilation process. Both allocation and routing are critical
to not only the operation of the circuit but also its vulner-
ability to error, as the error rates of qubits and connections
between qubits can vary greatly across the computer.
The most relevant compilation step to this work is qubit

allocation or selecting the initial positions to map virtual
qubits of the circuit to physical qubits of the backend. Al-
though the allocation method generally does not have as
much of an impact on the performance of the circuit as the
routing method, the initial position of qubits can impact the
choices presented to the routing method and can thus have
a substantial effect, particularly for shorter circuits. Qubit
allocation methods are normally chosen either to minimize
the depth of the circuit (the length of the critical path of op-
erations) or to maximize the success rate of the circuit. This
is normally done by minimizing the number of necessary
SWAPs inserted by the associated routing method, placing
virtual qubits on the most reliable physical qubits, placing
virtual qubits in the most highly connected regions of the
mesh, or a combination of these methods.
Optimization of the circuit normally occurs in two

stages, both before and after the circuit is mapped to the
backend hardware through the allocation and routing meth-

ods. Thus, the circuit is optimized at both the virtual level
before application and the resulting circuit after application.
This allows for high-level optimizations to be performed
while the circuit is still in a more conceptual stage, and
for lower-level optimizations afterward when the circuit has
been transformed. Typically, these optimizations involve re-
moving unnecessary or redundant operations (such as oper-
ations that cancel each other out), combining two or more
operations into a single operation that produces the same
result, or preparing states using additional unused qubits for
future operations. These optimizations can shorten the depth
of the circuit and, therefore, increase the resilience of the
circuit by having fewer operations and thus fewer chances
for errors to occur.

B. MEASUREMENT AND ERROR
Unlike in classical systems, it can be difficult to obtain con-
sistently correct outcomes even without error. Quantum cir-
cuits commonly complete execution by being measured back
into classical bits. The measurement collapses a state in su-
perposition into one of the two classical bits with probabil-
ities based on their coefficients. Specifically, measuring an
unknown state α|0〉 + β|1〉 gives state 0 with probability |α|2
and state 1 with probability |β|2. This holds when measuring
multiple qubits, where we can observe 2N total outcome pos-
sibilities depending on the states of the measured qubits.
The probabilistic nature of measurement is frequently ad-

dressed by executing a circuit many times (called the number
of shots) and counting how frequently each possible output
is observed. For some algorithms, the most frequent output
is then taken as the correct output for the circuit, while for
others, the entire output distribution is used for estimating
results. However, this becomes much more difficult when er-
rors are present in the execution of the circuit. Differentiating
between variation in measurement and the effects of error at
the point of measurement is difficult if not impossible, and
error-correcting methods are not feasible on NISQ systems
due to their small size. These errors may make it more diffi-
cult to identify a clear and convincing result from the circuit
output. In the worst cases, errors can be severe enough to
change which outcomes have the highest counts, thus leading
observers to the wrong conclusion about the correct output.
To further complicate the evaluation of quantum circuits, a

circuit can have two or more correct outputs with near equal

VOLUME 4, 2023 3101414

Engineeringuantum
Transactions onIEEE

LeCompte et al.: MACHINE-LEARNING-BASED QUBIT ALLOCATION FOR ERROR REDUCTION IN QUANTUM CIRCUITS

counts without any influence from errors. The most simple
example is measuring a single qubit in the |+〉 = 1√

2
(|0〉 +

|1〉) state, commonly generated by a single Hadamard oper-
ation on a single qubit. The probability of measuring 0 or 1
is exactly 1

2 = α2 = β2. We would thus expect equal counts
for both outcomes. It can be difficult to evaluate the correct-
ness of circuits with these forms of outputs. We describe our
approach for evaluation and comparison in Section III.

C. NEURAL NETWORKS
Neural networks are a powerful tool for machine learning
that act as universal function approximators. The fundamen-
tal component of neural networks is the perceptron, an arti-
ficial neuron that computes an value output by applying an
activation function to a weighted sum of its inputs. Given a
set of input and output pairs, the perceptron aims to adjust
its weights to minimize a loss function. The choice of acti-
vation and loss functions are application specific, although
there are some well-known and commonly used functions
for most applications. Activation functions commonly act as
some form of threshold function or a transformation of the
weighted sum. Examples include a simple linear function, a
binary threshold function, the sigmoid function (important
due to its differentiable nature compared to the standard bi-
nary threshold), or the rectified linear unit (ReLU) function,
which outputs zero if the input is negative and acts as a linear
function if input is positive.
Neural networks are created by combining multiple per-

ceptrons together. While single-layer neural networks have
a fair amount of discriminatory power, it is more common
to stack multiple layers of perceptrons, where deeper layers
receive the outputs of previous layers as inputs. The addition
of multiple layers can greatly improve the performance of
networks at the cost of increased training time and larger
training data requirements. For example, the well-known
AlexNet contains eleven total layers (including three pooling
layers) [26]. Our architecture, as shown in Fig. 7, is similarly
built using a number of stacked layers. The GNN layers will
be explained in detail in the following section. Flatten layers
simply compress amultidimensional array of sizeN × N into
an N2 × 1 vector and are largely negligible when discussing
time complexity. Concat layers concatenate multiple vectors
into one large vector and are similarly negligible. Dense
layers represent fully-connected layers, where every input is
fed into each neuron in the layer. It follows that dense layers
have a time complexity ofO(NNL), whereN is the number of
inputs to the layer, and NL is the number of nodes within the
layer. Finally, argmax is an operation that outputs the index
associated with themaximum value in the input vector. In our
case, argmax is used to identify which class action results in
a maximum reward.

D. GRAPH NEURAL NETWORKS
GNNs are a relatively new network architecture in the neu-
ral network toolkit [39]. They are specialized in handling
and interpreting graph-based data that may normally be dif-
ficult for standard feedforward networks or convolutional

networks. GNNs are useful for the selection and prediction
of edges and nodes, learning condensed representations of a
graph as a whole, locating particular subgraphs, specialized
graph traversals, and other applications. They are particularly
powerful when the data naturally has a graph representation
where features of both the nodes and edges are important for
making decisions.
GNNs operate by sharing and diffusing information from

node to node across the edges. Given an input graph, a GNN
layer will compute a new representation for each node (and
possibly edge) based on the values of nodes and edges within
the immediate neighborhood of the node, as shown in Fig. 3.
The function is typically a weighted linear combination of
the node and edge features, where the weights are learned
throughout the training process. This can be followed by
an activation function similar to standard dense layers. Nor-
mally the neighborhood is the set of all nodes within one
distance of the node in question, although this can be defined
and restricted as necessary for a given problem. Multiple
stacked GNN layers thus expand the neighborhood of a node,
where the maximum distance of the neighborhood is equal to
the number of stacked GNN layers. More layers effectively
create a stronger diffusion of information across the graph.
While this can be beneficial to share information, it has been
observed that too many layers can decrease the performance
of models containing GNNs as every node tends to approach
the same representation, an average of the graph as a whole.
This state destroys the individual identity of each node and
negatively impacts the performance of further processing.
The number of recommendedGNN layers varies on the prob-
lem but is generally from one to three layers depending on the
size of the graph.
GNNs can be simplified by representing the layer oper-

ations as a series of matrix multiplications. One can make
assumptions on the input graph to loosen the restrictions for
convergence present in the original design of GNNs. The
forward diffusion operation simply becomes a multiplication
of the graph’s normalized adjacency matrix, the node feature
matrix, and the learned weight matrix, as shown in [25]

X (k) = σ
(
ÃX (k−1)W

)
. (1)

Here, X (k) is the node representation matrix, Ã is the renor-
malized adjacency matrix, W is the learned weight matrix,
and σ is an activation function, commonly ReLU. These
matrix operations demonstrate that the computational com-
plexity of theGNN layers isO(N2), whereN is the number of
nodes in the graph. This assumes that the number of nodes
is greater than the number of features per node, which is a
reasonable assumption at larger graph sizes.
From here, the process is further simplified by the obser-

vation that multiple layers are simply a repeated multipli-
cation of the node matrix with an adjacency matrix, as the
multiple weight matrices can be consolidated into one during
the learning process. Ultimately, one can perform the work
of multiple GNN layers by simply applying an activation
function to the product of a power of the adjacency matrix,

3101414 VOLUME 4, 2023

LeCompte et al.: MACHINE-LEARNING-BASED QUBIT ALLOCATION FOR ERROR REDUCTION IN QUANTUM CIRCUITS Engineeringuantum
Transactions onIEEE

FIGURE 3. GNN update of node N1 as a function of the node and edge values within its neighborhood. (a) Initial Graph. (b) After 1 GNN Layer.

the node matrix, and the learned weight matrix, as shown
in [50]

X (k) = σ
(
ÃkX (0)W

)
. (2)

Here, X (0) denotes the original node matrix. All other
variables are the same as in (1).

Other work has been done to further enhance the applica-
bility of GNNs to more complex types of graphs. The most
relevant for our work is the addition of edge features [17]. By
replacing the adjacency matrix with an edge matrix E where
Ei, j equals the weight from node i to node j, the GNN can
incorporate edge features while maintaining a simple design.
This can be extended if the edge has multidimensional fea-
tures by extending the dimensions of E. It is recommended to
normalize the matrix using double-stochastic normalization
to accelerate training. There are additional modifications that
can be made to account for directed graphs by utilizing two
concatenated edge matrices.
GNNs can also be combined with other neural network

architectures depending on the problem at hand.We can think
of the GNN operation shown in (1) as being in two steps: an
initial propagation stage S = ÃX (k−1), followed by a linear
inference stage Xk = σ (SW). This linear stage can be re-
placed with other structures to solve a greater range of prob-
lems. Work has been done to demonstrate recurrent GNNs
with gated units (GGCNs) [10], [30] and even attention-
based GNNs [46], [47]. While these architectures are not
used in this work, the recurrent nature of these structures
may be beneficial for future works solving the qubit routing
problem.

E. REINFORCEMENT LEARNING
Reinforcement learning is a form of unsupervised learn-
ing that solves problems by exploring and receiving feed-
back from the problem environment. An agent is allowed to
observe the current state of the environment and choose an
action to take, changing the state of the environment and re-
ceiving some reward. Through the learning process, the agent
aims to maximize the total reward earned before reaching

some terminal state of the environment. Defining a reinforce-
ment learning problem involves describing a set of compo-
nents: the set of actions an agent can take, the description of
the environment (including its state and state transitions), the
reward function for taking actions, the method for choosing
actions, and the method for learning to maximize rewards.
The actions, environment, and rewards are directly depen-

dent on the problem at hand. For example, if the goal is to
find the shortest path in a grid-tiled environment, the actions
would be the set of movements the agent can take (moving
up, down, left, right) while the state of the environment
would be the current position on the grid represented in
(x, y) coordinates. The rewards may vary based on whether
the state is a terminal or nonterminal state. Following the
same example, for nonterminal states, the reward could be
dependent on the distance from the current position to the
end tile while the terminal state could provide a large flat
reward.
By comparison, the decision and learning methods are

more general. The most commonly used decision and learn-
ing method is based on Q-learning [48] and the Bellman
optimality equation [7]. The goal is to provide an estimation
of the reward for each potential action given the current state.
From these estimations, it is common to simply select the
action with the greatest estimated reward, observe the ac-
tual reward, and adjust the estimation for the (state, action)
pair. These values are commonly tracked using a Q-table,
containing values for every possible (state, action) pair. The
simulation of the problem should then be run many times to
converge to accurate reward estimations and thus accurate
solutions to the problem.
As the number of states and actions grows larger,

the Q-table becomes too large and unreasonable. Mod-
ern approaches instead use a neural network to learn the
(state, action) �→ reward function, known as a Q-network.
These Q-networks can be designed depending on the envi-
ronment and the problem at hand, although they generally
follow a certain structure—receiving the current state of the
environment as input and providing a score for each possible
action as output. These networks are then trained via standard

VOLUME 4, 2023 3101414

Engineeringuantum
Transactions onIEEE

LeCompte et al.: MACHINE-LEARNING-BASED QUBIT ALLOCATION FOR ERROR REDUCTION IN QUANTUM CIRCUITS

back propagation using the error between the estimated and
observed rewards.

III. MOTIVATION
We utilize IBM’s Qiskit API [38] to investigate the cur-
rent performance of qubit allocation methods. Qiskit na-
tively contains four different allocation methods: 1) trivial,
2) dense, 3) noise-adaptive [34], and 4) sabre [29]. The
four methods address the mapping problem using very dif-
ferent approaches. The trivial layout simply maps the vir-
tual qubits (q1, q2, . . . , qn), in order, to the physical qubits
(0, 1, . . . ,N). The dense layout identifies highly connected
subgraphs of the mesh and places qubits in these areas. The
noise-adaptive layout is the first to rely on the most recent
backend configuration data, aiming to utilize the most re-
liable two-qubit connections available. The sabre method
utilizes an iterative process to fully route the circuit to find the
final layout, then reversing the circuit using the previous final
layout as a proposed initial layout. This process is repeated
several times to minimize the number of necessary SWAP
operations.
We tested these four layout methods on IBM’s 7-qubit

ibm_nairobi backend using 3-qubit to 7-qubit quantum phase
estimation (QPE) circuits. We limit to a maximum of seven
qubits as access to larger machines is limited. To evaluate
their effects, we first run a trial of each circuit using Qiskit’s
simulator with no error involved to attain a theoretical flaw-
less outcome that we use as the ground truth for every circuit.
While the measurements of the qubits are probabilistic in
nature, we execute all trials with 10 000 shots to minimize
the random influence. We then execute the six test circuits
on the ibm_nairobi backend using each layout method during
compilation, again using 10 000 shots. All other compilation
settings were kept default, including the routing methods.
We then compared the resulting output distribution with the
ground truth distribution by computing the fidelity between
them. The fidelity acts as a similarity metric between the
perfect ground-truth state and the real output state provided
by the physical backend. A higher fidelity (bound [0, 1])
indicates a higher similarity between states.
For ease of computing fidelity F , we rely on the Hellinger

distance formula described as follows:

F = 1√
2

√√√√ N∑
i=1

(√
pGTi −

√
pTi

)2

. (3)

Here, N is the total number of observed outputs, pGTi is the
probability of output i for the ground truth distribution, and
pTi is the probability of output i for the test distribution.
The results of these trials are shown in Fig. 4. In addition
to the previous four allocation methods, we also exhaus-
tively search for the layout that achieves maximum fidelity,
labeled best in Fig. 4. We provide the best outcome to com-
pare the performance of each allocation method to the best
possible outcome. Note that this exhaustive search is only
feasible with a small number of qubits, as the number of

FIGURE 4. Fidelity of Qiskit’s four qubit allocation methods on the
3–7-qubit QPE algorithm after execution on ibm_nairobi.

FIGURE 5. Fidelity of 7-qubit QPE when compiling with Qiskit’s four
allocation methods across one month of backend configurations for
ibm_nairobi.

possible layouts grows extremely quickly as the number of
qubits increases. As shown, we find that the layout method
closest to the best is inconsistent. Across all of the tested
circuit sizes, we see situations where each of the trivial,
noise-adaptive, and sabre methods are the closest to the
experimentally identified best fidelity.
To provide more insight into the differences between lay-

out methods, we evaluated every layout on one month of
daily calibration data for ibm_nairobi, as shown in Fig. 5.
This allows us to see how each allocation method performs
relative to one another over time. As expected, the best allo-
cation method is frequently either the noise-adaptive or sabre
layout methods. However, the accuracy improvements are
inconsistent, and we frequently see changes between which
is best over time. Occasionally, they are even outperformed
by the dense or trivial layouts.
It is not expected for the choice of layout to completely

remove all errors and achieve a fidelity of nearly 1. How-
ever, we did expect more improvements in their behavior. To
investigate the full impact of the initial layout on the outcome
error and provide ametric for comparison, we provide the full

3101414 VOLUME 4, 2023

LeCompte et al.: MACHINE-LEARNING-BASED QUBIT ALLOCATION FOR ERROR REDUCTION IN QUANTUM CIRCUITS Engineeringuantum
Transactions onIEEE

FIGURE 6. Fidelity of all possible 4-qubit layouts on ibm_nairobi’s
calibration from 01-07-2022. Results are for 4-qubit QPE.

distribution of different layouts in Fig. 6 for 4-qubit QPE. It
is clear that no layout is perfect, although there is a large
difference between the best (above 0.7 fidelity) and worst
(below 0.55 fidelity) layouts, demonstrating the importance
of choosing an initial layout. Additionally, the four allocation
algorithms commonly fail to identify the best layout and
frequently do not even choose one of the better-than-average
layouts. In total, these experiments demonstrate two main
points: 1) the choice of initial layout can have a consider-
able impact on circuit fidelity and 2) preexisting methods are
inconsistent in choosing effective layouts. There is room for
improvement when selecting layouts to reduce vulnerability
to error.

IV. ARCHITECTURE AND DATA REPRESENTATION
To improve the performance of current layout methods, we
look to use GNNs as the quantum backends are naturally
represented in a graph form. We combine GNNs with
additional feedforward layers to predict optimal layouts
given the backend error properties and an input circuit.
The following sections discuss our network architecture
in detail, including two main areas: 1) the backend graph
input representation and processing and 2) the circuit input
representation and processing. Details of the state vector
and output actions are found in Section V. The overall
architecture is shown in Fig. 7. Although training time is
dominated by the time spent executing simulations of the
quantum hardware, the overall complexity of the network
layers during feedforward operations is dominated by the
GNN layers with a complexity of O(N2).

A. BACKEND REPRESENTATION AND PROCESSING
The superconducting backends are commonly represented as
a graph, as shown in Fig. 1(b), where each node is a physical
qubit with a set of properties, such as the single-qubit gate
error rates, frequencies, and measurement errors. The edges,
representing available cnot connections, are weighted by
the associated cnot error rates. This configuration naturally

TABLE 1. List of All Node Features Collected From Physical Backends

lends itself to the edge-aware GNN variants. A sample back-
end with example properties is shown in Fig. 8(a).
To prepare the backend for the GNN layers, we must

construct both a node and edge matrix (which replaces the
adjacency matrix in standard GNN). For the node matrix X ,
we collect several properties from each node and arrange the
matrix where each row holds the properties of an individual
node, as shown in Fig. 8(b). The total set of properties that
we collect is found in Table 1, totaling 14 different error rates
and gate lengths. The final size of the node matrix is thus
N × 14, where N is the total number of physical qubits in the
backend. We access these properties using Qiskit’s IBMQ
provider API. The set of single-qubit gate data we collect
varies depending on the basis set of gates, although all of the
backends we test contain the same basis set. We choose to
scale the qubit frequency as it is many orders of magnitude
larger than the other values. We then normalize the matrix by
row to accelerate convergence.
The edge matrix E takes the same form as a weighted

adjacency matrix, where Ei, j equals the cnot error between
qubit i and qubit j, as shown in Fig. 8(c). Although it is not
required that the cnot error be symmetrical on all hardware
implementations, we found that, for the backends we tested,
the error rates were always symmetrical. We then normalize
the edge matrix in a doubly-stochastic manner, following the
design in [17] to ensure that both the rows and columns of E
sum to 1 again aid in convergence. Given that the edge matrix
is a variation of the adjacency matrix, its final dimensions are
N × N.

These two matrices are then fed into the network, specif-
ically into two stacked GNN layers. Together these layers
generate a new representation of the graph, which is then
passed through a flattening layer to reshape the representa-
tion in preparation for concatenation with the processed cir-
cuit matrix. The GNN layers perform an edge-aware version
of the forward computation described in

X (k) = σ
(
ẼX (k−1)W

)
. (4)

Here, E is our previously described edge matrix while σ is
the ReLU activation function.

VOLUME 4, 2023 3101414

Engineeringuantum
Transactions onIEEE

LeCompte et al.: MACHINE-LEARNING-BASED QUBIT ALLOCATION FOR ERROR REDUCTION IN QUANTUM CIRCUITS

FIGURE 7. Overall architecture of the layout prediction system. (A) marks the point of concatenation between both the circuit and graph subnetworks,
while (B) marks the end of the prediction network and the transition to the decoder.

FIGURE 8. (a) Example of 3-qubit backend with five sample node
features. (b) The resulting node matrix from the backend. (c) The
resulting edge matrix from the backend.

B. CIRCUIT REPRESENTATION AND PROCESSING
To provide the circuit information to the prediction network,
we first prepare a matrix containing hand-picked features
to capture the behavior of the circuit. After testing a variety
of different combinations, our final decision on circuit
features is shown in Table 2. We believe that capturing the
single-qubit operations each qubit, the measurement status
of each qubit, the count of cnot operations, and a set of cnot
partners for each qubit is sufficient for most basic circuits.
We provide results in Section VII that show the influence of
different look-ahead values, although by default we only use
the first cnot partner. Currently, this representation would

TABLE 2. List of All Circuit Features Collected From Test Circuits

likely fail to represent more complex circuits involving
mid-execution measurement and qubit reset, although these
operations do not occur in any of our test circuits and are
not commonly found. An example circuit and associated
circuit matrix are shown in Fig. 9. We simplify the example
by counting all single-qubit operations as one feature rather
than individual single-qubit operation counts.
It is important to note that we do not use the original logical

circuit to prepare these representations, as they may change
through the steps of the compilation process before prepar-
ing a layout. The most important changes that can occur
are decomposing multiqubit operations and subcircuits and
mapping to basis gates, as these can greatly change the view
of which operations the circuit performs. Instead, we acquire
the intermediate circuit during the compilation process at
the point where qubit mapping normally occurs, after these
other operations. This allows us to represent the circuit as
accurately as possible for choosing a layout.
Once this feature matrix is created for the circuits, we can

feed them to a flattening layer dense layer that reshapes the

3101414 VOLUME 4, 2023

LeCompte et al.: MACHINE-LEARNING-BASED QUBIT ALLOCATION FOR ERROR REDUCTION IN QUANTUM CIRCUITS Engineeringuantum
Transactions onIEEE

FIGURE 9. (a) Example of 3-qubit QFT circuit. (b) Constructed circuit matrix for the example circuit.

FIGURE 10. Training process data flow of the prediction network.

representation similar to that of the graph matrix after the
GNN layers, as shown in Fig. 7. This representation passes
through a dense layer to adjust to circuit features. The two
representation vectors are then concatenated along with the
current state vector and transposed before being passed to
another dense layer that now operates on the complete data
of both learned representations of the backend and the circuit.
This layer provides a score (the proposed Q-value) for each
possible action that can be taken during allocation. We then
identify the maximum score associated with the best action
to take at the current compilation step and execute that action
during the given iteration.

V. REINFORCEMENT LEARNING SETUP
In this section, we describe the components of the reinforce-
ment learning process, namely the actions, environment,
rewards, and training process. The overall training process
can be found in Fig. 10.

A. ACTIONS
When mapping the qubits, the available actions are sim-
ply one placement action for each (logical, physical) qubit
pair. This placement action represents assigning the logical
qubit to the associated physical qubit for the initial layout.
To account for circuits with fewer logical qubits than the
available physical qubits, we extend the logical qubits with
ancilla qubits to equal the number of physical qubits. The
full mapping is done to provide a fixed-length input vector
to the neural networks. This allows the network to learn
mappings for any number of logical qubits up to the number
of physical qubits in themachine. In total, this results inN2

phys
actions. This also characterizes the total number of outcomes
resulting from the final dense layer in Fig. 7. Following an
Epsilon-Greedy policy, with ε = 0.05, we select the action
associated with the maximum predicted value with probabil-
ity 1 − ε and a random action with probability ε to drive our
training decisions.

VOLUME 4, 2023 3101414

Engineeringuantum
Transactions onIEEE

LeCompte et al.: MACHINE-LEARNING-BASED QUBIT ALLOCATION FOR ERROR REDUCTION IN QUANTUM CIRCUITS

B. ENVIRONMENT
To define the environment, we first represent the state of
the physical hardware and the circuit as described in Sec-
tion IV. This requires both an edge and node matrix from the
physical backend that describes the error characteristics from
the latest calibration and a circuit matrix that represents the
operations that must take place for a given circuit.
These inputs are then complementedwith a vector contain-

ing the current mapping of qubits, specifically mapping from
physical → logical qubits. This captures the current state of
the layout, specifically a snapshot of the current layout at a
given time during compilation. The vector is initialized to
all zero values, indicating no qubits have been placed, and
gradually fills with nonzero values as placement actions are
taken each iteration. Together, the matrices and state vector
capture the problem itself as well as the current intermediate
solution.

C. REWARDS
When providing rewards, we first consider the placement of
ancilla qubits. As these qubits are not important to the exe-
cution of the circuit, placing the qubits provides no reward.
Similarly, when attempting to place a qubit that has already
been assigned to a physical qubit, no reward is given. In
contrast, placing a previously unplaced logical qubit provides
a flat reward to encourage prioritization.
The most interesting case is the reward given when com-

pleting the mapping of all logical qubits. In this case, we first
execute the circuit the circuit on the simulator using the error
profile of the backend. We choose to use the simulator as
we do not have dedicated access to a physical backend for
training. We then compare the output distribution to an error-
free output distribution that acts as our ground truth. This
error-free distribution is obtained by executing the circuit
on a simulator with no error simulation. This is effectively
a theoretically perfect outcome for the circuit, providing a
target for comparison.
To provide a tangible value, we compute the Hellinger

fidelity between the two distributions, as shown in (3). The
more similar the output distributions are, the closer this value
approaches 1. This is then scaled by 100 and provided as the
final reward. This guides GNAQC target configurations that
are most similar to the error-free distribution.

D. TRAINING
To train the network, we rely on the Qiskit Aer simulator
to simulate the execution of the circuit using the proposed
mapping. We then compute the fidelity between the results
of the simulation and the ground truth output of the circuit as
previously discussed. Once again, we rely on the Hellinger
fidelity, as described in (3), as our reward metric as opposed
to success rate as we do not necessarily know the correct out-
put of the given circuit with which to compute a success rate.
To make the approach more general, we instead target the
entire ground truth distribution using the fidelity. This error

is then used for back-propagation for training the network as
a whole.
The full training process is shown in Fig. 10. First, the

processed edge, node, and circuit matrices are fed to the pre-
diction network in step (1). The network outputs a suggested
action to take, namely a qubit placement, in step (2). The
reward for this action is calculated in step (3), where the
value of the reward depends on the result of the action. If the
action results in a fully-mapped circuit, we finish compilation
(routing and final optimization) and simulate the final circuit
in step (3B) using Qiskit’s Aer simulator. The simulator is
prepared with a noise model built on the error properties of
the collected backend under test. In step (3B), we collect the
output counts from the simulator and compute the fidelity
with the ground truth distribution. If the action did not result
in a fully-mapped circuit, we instead give either a reward of 0
if the qubit was already placed or a flat 10 if the qubit is newly
placed. Finally, we use this reward for the update process
following the typical Q-learning update rule in step (4).
It is worth noting here that we do not need to rely on

the simulator, which will not be feasible for increasingly
large circuits and backends, during this training process. We
could rely on other success metrics, like estimated success
probability [8] or other future methods, which may be more
scalable. However, we chose to use the simulator to be more
accurate to the hardware. Ideally, one would have dedicated
access to a physical machine for the training process, which
would address both the accuracy and scalability concerns.
A ground truth distribution would still need to be computed
either analytically, through simulation (which may not be
feasible), or an averaging ofmany runs on the hardware to ap-
proach a stable distribution. New methods, such as splitting
the circuit to improve fidelity, may aid in this process [44].
If a ground truth distribution cannot be identified, the rein-
forcement learning process would need to be modified to
rely on other metrics that are correlated with fidelity, such as
gate count.

VI. DATA COLLECTION AND EXPERIMENTATION
Throughout our experimentation, we rely on a set of various
test circuits at different sizes executed on several different
physical backends. We focus on a set of six different circuits
as mentioned previously in Section III: the Deutsch–Jozsa
(DJ) algorithm, the Bernstein–Vazirani (BV) algorithm, Si-
mon’s algorithm, the quantum Fourier transform (QFT), the
QPE algorithm, and Grover’s search algorithm. We prepare
these circuits using 3, 4, 5, 6, 7, 15, and 27 qubits. We believe
that two qubits are simply too trivial, and we are limited to
evaluating on backends with 7 or 27 maximum qubits. The
characteristics of these circuits, specifically the count of the
final gates used for each algorithm, at each circuit size are
detailed in Table 3.
For the backends, we collected calibrations for

ibm_nairobi, a 7-qubit backend, and ibm_algiers, a
27-qubit backend. We selected these two as a sample of
the available 7-qubit and 27-qubit machines we can access.

3101414 VOLUME 4, 2023

LeCompte et al.: MACHINE-LEARNING-BASED QUBIT ALLOCATION FOR ERROR REDUCTION IN QUANTUM CIRCUITS Engineeringuantum
Transactions onIEEE

TABLE 3. Details of the Six Test Circuits at All Sizes Used for All
Experiments

TABLE 4. Details of the Two Backends Used for Collecting Data for All
Experiments

We specifically collected the archived daily calibrations
from January 1st, 2022, through the end of May 2022. The
backends vary in topology, with ibm_nairobi having an I
shape and ibm_algiers having an adjusted square shape.
Both backends share the same set of basis gates. These
details are summarized in Table 4.

VII. RESULTS
To evaluate the general performance of GNAQC, we predict
layouts for the circuits using the most recent calibrations at
their time of execution. The historical backend calibrations
are used for training. We compare these results to the
previously measured errors for the four layout methods
contained within Qiskit. These results are shown in Fig. 11.
Here, the “learned” layout is the behavior of the layout

output by our method. It can be observed that the learned
layout generally outperforms the preexisting layouts for each

benchmark at different algorithm sizes. The learned layouts
consistently perform better on simpler algorithms, such as
DJ, BV, and Simon. There is less, though fairly consistent,
improvement on the larger algorithms. On average, how-
ever, we see a relative improvement in fidelity of approxi-
mately 12.7%.
We group the data by each circuit regardless of backend or

qubit size to inspect the mean performance on the individual
algorithms. These results are shown in Fig. 12. Here, the
learned layouts show improvement or consistent behavior on
most circuits. In the worse cases, GNAQC performs compa-
rably to the best alternative layout method. The magnitude
of the improvement varies from circuit to circuit and is also
dependent on the next-best choice. In general, we believe this
variation is due to the effect different layouts have depending
on the length of the algorithm, where shorter circuits are
simplymore influenced by the initial position of qubits, while
longer algorithms are likely more influenced by the routing
methods.
Next, we group the results by the number of qubits in-

volved in the algorithm to observe performance based on
the size of the circuits, as shown in Fig. 13. As we can see,
the largest improvement is found on smaller circuit sizes.
We see the most variation in behavior among the layouts at
3–5 qubits, with more consistent performance among all five
methods at larger sizes. We identify two main reasons for
this variation in behavior. First, as the depth of the circuit
increases due to the increased number of qubits, the fidelity
decreases drastically. This results in less room for the layouts
to vary as the fidelity is simply so low. Second, we believe
that this has to do with the percentage of qubits used on the
backend and the topology of the machine itself. When using
all of the qubits on the machine, more SWAPs will likely
need to be added to allow the circuit to function regardless
of the initial position of qubits. At smaller sizes, particularly
three qubits, the number of added SWAPs may vary greatly
based on the initial position of qubits. It may be possible to
place them in a configurationwhere no SWAPs are necessary,
such as a triangle section in the mesh, or to place them at op-
posite sides of the mesh where many SWAPs are necessary.
Look-ahead: In all of the previous results shown, we have

utilized a cnot look-ahead window of length 1, as described
in Section IV-B. However, we also examined a variable look-
ahead window from lengths 1 to 5. For a chosen look-ahead
value LA, our circuit matrix will hold the first LA cnot part-
ners for each qubit. We evaluated our method for all 1 <=
LA <= 5 for 7-qubit circuits using a simulator based on the
properties of ibm_nairobi. We chose to use the simulator here
due to time restrictions and the number of executions neces-
sary. The results are shown in Fig. 14. As shown, the value
of LA does not have a large impact on performance. This
could be due to insufficient training data when increasing the
number of parameters.
To evaluate the cost of GNAQC, wemeasure the execution

time of each layout method for QFT as shown in Fig. 15.
GNAQC-onerun is the time to perform a single inference

VOLUME 4, 2023 3101414

Engineeringuantum
Transactions onIEEE

LeCompte et al.: MACHINE-LEARNING-BASED QUBIT ALLOCATION FOR ERROR REDUCTION IN QUANTUM CIRCUITS

FIGURE 11. All results from testing 3–27 qubit algorithms on ibm algiers and nairobi when compiling with each of the five allocation methods.

FIGURE 12. Fidelity of different layout methods grouped by each test
circuit.

FIGURE 13. Fidelity of different layout methods grouped by number of
qubits used in the circuit.

stage while GNAQC-total is the total time to place all qubits
(one inference iteration per qubit). It is clear that GNAQC
performs in line with the other methods and scales better to
larger qubit sizes than the sabre method.

VIII. RELATED WORKS
A. IMPROVING ACCURACY
Increasing circuit resilience to errors is a major field in quan-
tum computing research. A common approach involves mod-
ifying compilation, either the allocation or routing passes.

FIGURE 14. Fidelity for 1–5 look-ahead representations for the test
circuits.

FIGURE 15. Compilation time for each of the layout methods. The trivial
method is not included due to negligible execution time.

The first major works identified that routing should focus
not only on the number of inserted SWAP operations but
also the reliability of the qubit connections [34], [45]. This
included a modified routing method to be aware of the cnot
error rates. By focusing on using the most reliable qubits
and connections, the final accuracy of the circuit could be
improved substantially. Later observations showed that per-
forming cnot operations in parallel with other nearby op-
erations would increase error rates, suggesting that routing

3101414 VOLUME 4, 2023

LeCompte et al.: MACHINE-LEARNING-BASED QUBIT ALLOCATION FOR ERROR REDUCTION IN QUANTUM CIRCUITS Engineeringuantum
Transactions onIEEE

methods should plan for this cross-talk error and attempt
to avoid parallel operations on adjacent qubits where pos-
sible [13], [35]. While this creates a more complex routing
problem, isolating cnot operations where possible also con-
siderably improves circuit performance. Others have demon-
strated that one can improve reliability by executing a circuit
in multiple parts and then reconstructing the overall distri-
bution [44]. This allows for focusing on only a few qubits
at a time and using only the most reliable physical qubits
while avoiding unnecessary cross-talk then combining the
individual trial outputs into a final, more accurate distribu-
tion. Meanwhile, the research on debugging, protecting, and
reusing resources is also trying to find solutions to mitigate
the constraints of error in the field. The quantum assertion
technique was proposed and evolved in [22], [31], and [32]
to locate the errors and bugs while running quantum algo-
rithms. Applying QEC to superconducting quantum chips
is also being actively studied in [6], [23], [19], and [20].
While hardware implementations of error correction will
likely be valuable in the future, current NISQ sizes struggle
to implement them while maintaining enough usable qubits
for practical algorithms. Reusing the valuable quantum re-
sources, the physical qubits, is being studied in [14], includ-
ing resetting qubits to basis states or reversing operations
to reduce the total number of qubits or SWAPs necessary
during execution.

B. QUBIT ALLOCATION
The two most relevant allocation methods are the two al-
ready contained within Qiskit, the noise-adaptive [34], and
sabre [29] methods. These methods are used as two compar-
isons to GNAQC throughout our experiments. Some meth-
ods utilize locating the optimal layout at smaller sizes to
produce heuristics that are then tested on larger-scale sys-
tems [4], [52], [42]. Our demonstration in Section III follows
a similar approach, where we compare the performance of
each method against the best possible layouts on smaller
sizes. While this is helpful, it is difficult to extrapolate from
smaller to larger sizes due to growing complexity. Other
works similarly search the set of possible layouts while
guided by fidelity or other success methods [15], [27], [28].
All of these approaches aim to minimize the vulnerability of
the circuit through the choice of an initial layout through a
variety of different methods.

C. GNN APPLICATIONS
The base GNN [39] design has many modifications for a
variety of different applications. Extensions have been added
to the GNN for recurrent units similar to gated recurrent
networks [10], [30]. The addition of recurrent units im-
proves performance on deep GNNs, namely when applied
to a graph changing over time, similar to recurrent neural
networks on traditional time series data. Graph convolutional
networks (GCNs) enhance the process and improve upon
the original design for node classification tasks [25], [50].
Again, GCNs borrow from traditional convolutional neural

networks, commonly used for multidimensional tasks, such
as image processing and apply the approach to graphs. Sev-
eral tools have been built using GCNs for learning graph
representations [18], [37] while others leverage adversarial
approaches for learning graph embeddings [36]. The idea of
using GNNs to improve compilation has similarly been used
in hardware placement for classical circuits [3], [33], [51],
but not for quantum circuits.

IX. CONCLUSION
We have proposed GNAQC, a new GNN-based neural net-
work architecture for improving the reliability of supercon-
ducting quantum circuits by identifying more resilient lay-
outs. We compare the proposed layouts with the preexist-
ing layout methods contained within Qiskit and find a mean
12.7% relative increase in fidelity across both backend con-
figurations with six different circuits. In the future, we be-
lieve we could achieve even greater results by expanding the
work to include a routing method using recurrent GNNs or
experimenting with different feature representations.

REFERENCES
[1] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum,

vol. 2, p. 79, 2018, doi: 10.22331/q-2018-08-06-79.
[2] M. Abadi et al., “TensorFlow: Large-scale machine learning on heteroge-

neous systems,” 2015, software available from tensorflow.org. [Online].
Available: https://www.tensorflow.org/

[3] A. Agnesina, K. Chang, and S. K. Lim, “VlSI placement parameter op-
timization using deep reinforcement learning,” in Proc. 39th Int. Conf.
Comput.-Aided Des., 2020, pp. 1–9, doi: 10.1145/3400302.3415690.

[4] A. Ash-Saki, M. Alam, and S. Ghosh, “QURE: Qubit re-allocation in
noisy intermediate-scale quantum computers,” in Proc. 56th Annu. Des.
Automat. Conf., 2019, pp. 1–6, doi: 10.1145/3316781.3317888.

[5] A. Ashikhmin and E. Knill, “Nonbinary quantum stabilizer codes,”
IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 3065–3072, Nov. 2001,
doi: 10.1109/18.959288.

[6] R. Barends et al., “Superconducting quantum circuits at the surface code
threshold for fault tolerance,” Nature, vol. 508, no. 7497, pp. 500–503,
2014, doi: 10.1038/nature13171.

[7] R. Bellman, “The theory of dynamic programming,” Bull.
Amer. Math. Soc., vol. 60, no. 6, pp. 503–515, 1954,
doi: 10.1090/S0002-9904-1954-09848-8.

[8] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum amplitude
amplification and estimation,” inQuantum Computation and Information.
ser. Contemporary Mathematics, vol. 305. Providence, RI, USA: Amer.
Math. Soc, 2002, doi: 10.1090/conm/305..

[9] W. Cai, Y. Ma, W. Wang, C.-L. Zou, and L. Sun, “Bosonic quantum error
correction codes in superconducting quantum circuits,” Fundam. Res.,
vol. 1, no. 1, pp. 50–67, 2021, doi: 10.1016/j.fmre.2020.12.006.

[10] C. Chen et al., “Gated residual recurrent graph neural networks for traf-
fic prediction,” in Proc. AAAI Conf. Artif. Intell., 2019, vol. 33, no. 1,
pp. 485–492, doi: 10.1609/aaai.v33i01.3301485.

[11] J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature,
vol. 453, no. 7198, pp. 1031–1042, 2008, doi: 10.1038/nature07128.

[12] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gam-
betta, “Validating quantum computers using randomized model circuits,”
Phys. Rev. A, vol. 100, no. 3, 2019, Art. no. 032328, doi: 10.1103/Phys-
RevA.100.032328.

[13] Y. Ding, P. Gokhale, S. F. Lin, R. Rines, T. Propson, and F. T. Chong, “Sys-
tematic crosstalk mitigation for superconducting qubits via frequency-
aware compilation,” in Proc. 53rd Annu. IEEE/ACM Int. Symp. Microar-
chitecture, 2020, pp. 201–214, doi: 10.1109/MICRO50266.2020.00028.

[14] Y. Ding et al., “SQUARE: Strategic quantum ancilla reuse for modular
quantum programs via cost-effective uncomputation,” in Proc. ACM/IEEE
47th Annu. Int. Symp. Comput. Architecture, 2020, pp. 570–583,
doi: 10.1109/ISCA45697.2020.00054.

VOLUME 4, 2023 3101414

https://dx.doi.org/10.22331/q-2018-08-06-79
https://www.tensorflow.org/
https://dx.doi.org/10.1145/3400302.3415690
https://dx.doi.org/10.1145/3316781.3317888
https://dx.doi.org/10.1109/18.959288
https://dx.doi.org/10.1038/nature13171
https://dx.doi.org/10.1090/S0002-9904-1954-09848-8
https://dx.doi.org/10.1090/conm/305.
https://dx.doi.org/10.1016/j.fmre.2020.12.006
https://dx.doi.org/10.1609/aaai.v33i01.3301485
https://dx.doi.org/10.1038/nature07128
https://dx.doi.org/10.1103/PhysRevA.100.032328
https://dx.doi.org/10.1103/PhysRevA.100.032328
https://dx.doi.org/10.1109/MICRO50266.2020.00028
https://dx.doi.org/10.1109/ISCA45697.2020.00054

Engineeringuantum
Transactions onIEEE

LeCompte et al.: MACHINE-LEARNING-BASED QUBIT ALLOCATION FOR ERROR REDUCTION IN QUANTUM CIRCUITS

[15] W. Finigan, M. Cubeddu, T. Lively, J. Flick, and P. Narang, “Qubit
allocation for noisy intermediate-scale quantum computers,” 2018,
arXiv:1810.08291, doi: 10.48550/arXiv.1810.08291.

[16] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface
codes: Towards practical large-scale quantum computation,” Phys. Rev. A,
vol. 86, no. 3, 2012, Art. no. 032324, doi: 10.1103/PhysRevA.86.032324.

[17] L. Gong and Q. Cheng, “Exploiting edge features for graph neural net-
works,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 9211–9219, doi: 10.1109/CVPR.2019.00943.

[18] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learn-
ing on large graphs,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst.,
2017, pp. 1025–1035. [Online]. Available: https://proceedings.neurips.cc/
paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.
pdf

[19] A. Holmes, Y. Ding, A. Javadi-Abhari, D. Franklin, M. Martonosi, and
F. T. Chong, “Resource optimized quantum architectures for surface code
implementations of magic-state distillation,”Microprocessors Microsyst.,
vol. 67, pp. 56–70, 2019, doi: 10.1016/j.micpro.2019.02.007.

[20] A. Holmes, M. R. Jokar, G. Pasandi, Y. Ding, M. Pedram, and F. T. Chong,
“NISQ: Boosting quantum computing power by approximating quantum
error correction,” in Proc. IEEE/ACM 47th Annu. Int. Symp. Comput.
Architecture, 2020, pp. 556–569, doi: 10.1109/ISCA45697.2020.00053.

[21] C. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter, “Surface code
quantum computing by lattice surgery,”New J. Phys., vol. 14, no. 12, 2012,
Art. no. 123011, doi: 10.1088/1367-2630/14/12/123011.

[22] Y. Huang and M. Martonosi, “Statistical assertions for validating patterns
and finding bugs in quantum programs,” in Proc. 46th Int. Symp. Comput.
Architecture, 2019, pp. 541–553, , doi: 10.1145/3307650.3322213.

[23] A. Javadi-Abhari et al., “Optimized surface code communication
in superconducting quantum computers,” in Proc. IEEE/ACM
50th Annu. Int. Symp. Microarchitecture, 2017, pp. 692–705,
doi: 10.1145/3123939.3123949.

[24] D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a
large-scale ion-trap quantum computer,” Nature, vol. 417, no. 6890,
pp. 709–711, 2002, doi: 10.1038/nature00784.

[25] T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” 2016, arXiv:1609.02907,
doi: 10.48550/arXiv.1609.02907.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, Jun. 2017, doi: 10.1145/3065386.

[27] T. LeCompte, F. Qi, and L. Peng, “Robust cache-aware quantum pro-
cessor layout,” in Proc. IEEE Int. Symp. Reliable Distrib. Syst., 2020,
pp. 276–287, doi: 10.1109/SRDS51746.2020.00035.

[28] T. LeCompte, F. Qi, X. Yuan, N.-F. Tzeng, M. H. Najaf, and L. Peng,
“Graph neural network assisted quantum compilation for qubit allo-
cation,” in Proc. ACM Great Lakes Symp. VLSI, 2023, pp. 415–419,
doi: 10.1145/3583781.3590300.

[29] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem
for NISQ-era quantum devices,” in Proc. 24th Int. Conf. Architec-
tural Support Program. Lang. Operating Syst., 2019, pp. 1001–1014,
doi: 10.1145/3297858.3304023.

[30] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated
graph sequence neural networks,” 2015, arXiv:1511.05493,
doi: 10.48550/arXiv.1511.05493.

[31] J. Liu, G. T. Byrd, and H. Zhou, “Quantum circuits for dynamic run-
time assertions in quantum computation,” in Proc. 25th Int. Conf. Archi-
tectural Support Program. Lang. Operating Syst., 2020, pp. 1017–1030,
doi: 10.1145/3373376.3378488.

[32] J. Liu and H. Zhou, “Systematic approaches for precise and approxi-
mate quantum state runtime assertion,” in Proc. 27th IEEE Int. Symp.
High- Perform. Comput. Architecture, 2021, vol. 21, pp. 179–193,
doi: 10.1109/HPCA51647.2021.00025.

[33] Y.-C. Lu, S. Pentapati, and S. K. Lim, “VLSI placement opti-
mization using graph neural networks,” in Proc. 34th Conf. Neu-
ral Inf. Process. Syst. ML Syst. Workshop, 2020, pp. 6–12. [On-
line]. Available: https://mlforsystems.org/assets/papers/neurips2020/vlsi_
placement_lu_2020.pdf

[34] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi,
“Noise-adaptive compiler mappings for noisy intermediate-scale quantum
computers,” in Proc. 24th Int. Conf. Architectural Support Program. Lang.
Operating Syst., 2019, pp. 1015–1029, doi: 10.1145/3297858.3304075.

[35] P. Murali, D. C. McKay, M. Martonosi, and A. Javadi-Abhari, “Software
mitigation of crosstalk on noisy intermediate-scale quantum computers,”
in Proc. 25th Int. Conf. Architectural Support Program. Lang. Operating
Syst., 2020, pp. 1001–1016, doi: 10.1145/3373376.3378477.

[36] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adver-
sarially regularized graph autoencoder for graph embedding,” 2018,
arXiv:1802.04407, doi: 10.48550/arXiv.1802.04407.

[37] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learn-
ing of social representations,” in Proc. 20th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2014, pp. 701–710, doi: 10.1145/2623330.
2623732.

[38] Qiskit contributors, “Qiskit: An open-source framework for quantum com-
puting,” 2023. [Online]. Available: https://qiskit.org/

[39] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” in IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Jan. 2009, doi: 10.1109/TNN.2008.2005605.

[40] P. Shor, “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,” SIAM Rev., vol. 41, no. 2,
pp. 303–332, 1999, doi: 10.1137/S0036144598347011.

[41] P. W. Shor, “Scheme for reducing decoherence in quantum com-
puter memory,” Phys. Rev. A, vol. 52, no. 4, 1995, Art. no. R2493,
doi: 10.1103/PhysRevA.52.R2493.

[42] M. Y. Siraichi, V. F.d. Santos, S. Collange, and F. M. Q. Pereira, “Qubit
allocation,” in Proc. Int. Symp. Code Gener. Optim., 2018, pp. 113–125,
doi: 10.1145/3168822.

[43] A.M. Steane, “Error correcting codes in quantum theory,”Phys. Rev. Lett.,
vol. 77, no. 5, 1996, Art. no. 793, doi: 10.1103/PhysRevLett.77.793.

[44] S. S. Tannu and M. Qureshi, “Ensemble of diverse mappings: Improving
reliability of quantum computers by orchestrating dissimilar mistakes,”
in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchitecture, 2019,
pp. 253–265, doi: 10.1145/3352460.3358257.

[45] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: A case
for variability-aware policies for NISQ-era quantum computers,” in Proc.
24th Int. Conf. Architectural Support Program. Lang. Operating Syst.,
2019, pp. 987–999, doi: 10.1145/3297858.3304007.

[46] K. K. Thekumparampil, C. Wang, S. Oh, and L.-J. Li, “Attention-
based graph neural network for semi-supervised learning,” 2018,
arXiv:1803.03735, doi: 10.48550/arXiv.1803.03735.

[47] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” 2017, arXiv:1710.10903,
doi: 10.48550/arXiv.1710.10903.

[48] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
pp. 279–292, 1992, doi: 10.1007/BF00992698.

[49] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,”
Nature, vol. 299, no. 5886, pp. 802–803, 1982, doi: 10.1038/299802a0.

[50] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger,
“Simplifying graph convolutional networks,” in Proc. Int.
Conf. Mach. Learn., 2019, pp. 6861–6871. [Online]. Available:
https://proceedings.mlr.press/v97/wu19e.html

[51] G. Zhang, H. He, and D. Katabi, “Circuit-GNN: Graph neural net-
works for distributed circuit design,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 7364–7373. [Online]. Available: http://proceedings.mlr.press/
v97/zhang19e.html?ref=https://githubhelp.com

[52] P. Zhu, X. Cheng, and Z. Guan, “An exact qubit allocation approach for
NISQ architectures,” Quantum Inf. Process., vol. 19, no. 11, pp. 1–21,
2020, doi: 10.1007/s11128-020-02901-4.

3101414 VOLUME 4, 2023

https://dx.doi.org/10.48550/arXiv.1810.08291
https://dx.doi.org/10.1103/PhysRevA.86.032324
https://dx.doi.org/10.1109/CVPR.2019.00943
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://dx.doi.org/10.1016/j.micpro.2019.02.007
https://dx.doi.org/10.1109/ISCA45697.2020.00053
https://dx.doi.org/10.1088/1367-2630/14/12/123011
https://dx.doi.org/10.1145/3307650.3322213
https://dx.doi.org/10.1145/3123939.3123949
https://dx.doi.org/10.1038/nature00784
https://dx.doi.org/10.48550/arXiv.1609.02907
https://dx.doi.org/10.1145/3065386
https://dx.doi.org/10.1109/SRDS51746.2020.00035
https://dx.doi.org/10.1145/3583781.3590300
https://dx.doi.org/10.1145/3297858.3304023
https://dx.doi.org/10.48550/arXiv.1511.05493
https://dx.doi.org/10.1145/3373376.3378488
https://dx.doi.org/10.1109/HPCA51647.2021.00025
https://mlforsystems.org/assets/papers/neurips2020/vlsi_placement_lu_2020.pdf
https://mlforsystems.org/assets/papers/neurips2020/vlsi_placement_lu_2020.pdf
https://dx.doi.org/10.1145/3297858.3304075
https://dx.doi.org/10.1145/3373376.3378477
https://dx.doi.org/10.48550/arXiv.1802.04407
https://dx.doi.org/10.1145/2623330.2623732
https://dx.doi.org/10.1145/2623330.2623732
https://qiskit.org/
https://dx.doi.org/10.1109/TNN.2008.2005605
https://dx.doi.org/10.1137/S0036144598347011
https://dx.doi.org/10.1103/PhysRevA.52.R2493
https://dx.doi.org/10.1145/3168822
https://dx.doi.org/10.1103/PhysRevLett.77.793
https://dx.doi.org/10.1145/3352460.3358257
https://dx.doi.org/10.1145/3297858.3304007
https://dx.doi.org/10.48550/arXiv.1803.03735
https://dx.doi.org/10.48550/arXiv.1710.10903
https://dx.doi.org/10.1007/BF00992698
https://dx.doi.org/10.1038/299802a0
https://proceedings.mlr.press/v97/wu19e.html
http://proceedings.mlr.press/penalty -@M v97/zhang19e.html{?}ref$=$https://githubhelp.com
http://proceedings.mlr.press/penalty -@M v97/zhang19e.html{?}ref$=$https://githubhelp.com
https://dx.doi.org/10.1007/s11128-020-02901-4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

